skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Taejin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PtRuC offers the opportunity to electrochemically convert bio-oils to drop-in biofuels and platform chemicals. Here we demonstrate the concept using phenol to cyclohexane as a model reaction. 
    more » « less
  2. Current synthesis techniques for metal oxide (MOx)-supported catalysts have certain limitations of undesired target loading, ineffective dispersion of active species over the surface, uncontrolled particle size of active species, and complicated synthesis steps. We developed a one-pot chemical vapor deposition (OP-CVD) methodology; by using which a solid metal precursor forms a vapor in a controlled condition and gets supported over the surrounding matrix. The theoretical stability followed by experimental validation using TGA is crucial for selecting the metal precursors. Three simple steps viz. premixing, dispersion, and rapid fixation by calcination are involved in the catalyst development via the OP-CVD approach. This study solely focused on the synthesis of 3d transition MOx over ceria support. The physicochemical characterizations of the prepared catalysts were performed by XRD, ICP-OES, SEM-EDX, CO pulse chemisorption, XANES, and EXAFS analyses to understand the crystal structure of involved species, target metal loading, dispersion, and particle size and prove the feasibility and viability of OP-CVD. The prepared catalysts were further tested for reverse water gas shift (RWGS) reaction to link their structural information with activity. The RWGS reaction data showed that the CO activity and CO selectivity were metal - and metal precursor-dependent. Higher CO activity of > 0.1 mol/h g-cat was observed for Cu and Co-based catalysts, with CO selectivity of ~100 %. This study provides an opportunity to produce effcient supported catalysts in a convenient way, providing effective catalytic activity. 
    more » « less
  3. NiOx/CeO2catalysts were synthesized under various pretreatment conditions. Different pretreatment conditions significantly influenced the activity of the NO reduction by CO reaction. 
    more » « less
  4. Synthetic dye removal is a topic of increasing interest as textile recycling has become more popular in industries. While methods involving dye removal from wastewater effluent have been widely studied and reported on, research on decolorization of fabric itself remains quite unknown. In regard to the lack of research, this study presents cotton fabric samples dyed with crystal violet (CV) that were treated with varying concentrations of sodium hydroxide (NaOH). Fabric decolorization was studied using several characterization methods. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy data showed that the cellulose structure remained unchanged after CV and NaOH treatment. Characteristic CV peaks in the FTIR and Raman spectra were apparent only in the control sample, while the spectra of NaOH-treated samples were very similar to that of the cotton fabric. X-ray diffractometry (XRD) data also confirmed that the crystallite size of cellulose was not affected by CV and NaOH treatment. A visible violet hue remained in all NaOH-treated samples, though CV intensity was inversely proportional to NaOH concentration. The L*a*b* values were utilized to complement characterization results. As the concentration of NaOH was increased, the CIELAB parameters aligned more with those of the plain untreated fabric. 
    more » « less
  5. To investigate reaction order and kinetic parameters of the reaction between crystal violet (CV) and sodium hydroxide (NaOH), various concentrations of the reactants were applied. The present work also verifies the unknown solid product produced under highly concentrated conditions. The reaction orders of CV and NaOH were determined to be 1 and 1.08 by pseudo rate method, respectively, with a rate constant, k , of 0.054 [(M −1.08 ) s −1 ]. In addition to pseudo rate method, the half-life approach was used to calculate the overall reaction order to verify the accuracy of pseudo rate method. The overall reaction order was determined to be 1.9 by the half-life method. The overall reaction order based on the two methods studied was approximately 2. The precipitate formation was observed when high concentrations of CV (0.01–0.1 M) and NaOH (1.0 M) were applied. Fourier transform infrared (FTIR) spectroscopy was used to compare the spectra of the precipitate generated and a commercial solvent violet 9 (SV9). Based on the FTIR spectra, it was confirmed that the molecular structure of the precipitate matched that of solvent violet 9. 
    more » « less